Nouvelle serie d'oxydes derives de la structure de α -U₃U₈: M^{II} UMo₄O₁₆

M. R. LEE*

Université P. et M. Curie, Laboratoire de Physico-Chimie des composés d'éléments de transition, 4, place Jussieu, Tour 54, 2ème étage, 75230 Paris Cédex 05, France

ET S. JAULMES

Faculté des Sciences Pharmaceutiques et Biologiques de Paris V, Laboratoire de Physique, 4, avenue de l'Observatoire, 75270 Paris Cédex 06, France

Received November 15, 1985; in revised form July 30, 1986

A new family of isotypical oxides $M^{II}UMo_4O_{16}$ ($M^{II} = Mg,Mn,Cd,Ca,Hg,Sr,Pb$) is identified. The structure of the compound with Ca was determined by X-ray diffraction. It is triclinic, space group $P\overline{I}$ with a = 13.239(5) Å, b = 6.651(2) Å, c = 8.236(3) Å, $\alpha = 90^{\circ}00(4)$, $\beta = 90^{\circ}38(4)$, $\gamma = 120^{\circ}16(3)$, Z = 2. The final index and the weighted R_w index are 0.049 and 0.040, respectively. The cell is related to the orthorhombic one of α -U₃O₈: $\mathbf{a} = 2\mathbf{a}_0$, $\mathbf{b} = -(\mathbf{a}_0 + \mathbf{b}_0)/2$, $\mathbf{c} = 2\mathbf{c}_0$. The structure, reminiscent of that of α -U₃O₈, consists of chains of [Ca,U]O₇ pentagonal bipyramids and MoO₆ octahedra, running parallel to the c axis. The U-O distances along the U-O-Ca-O chains are shortened to 1.77(1) Å. The uranyl ion was characterized by its IR spectrum. @ 1987 Academic Press, Inc.

Une nouvelle famille d'oxydes isotypes M^{11} UMo₄O₁₆ ($M^{11} = Mg,Mn,Cd,Ca,Hg,Sr,Pb$) est mise en évidence. La structure du composé au calcium est déterminée par diffraction X: maille triclinique centrée, a = 13,239(5) Å, b = 6,651(2) Å, c = 8,236(3) Å, $\alpha = 90^{\circ}00(4)$, $\beta = 90^{\circ}38(4)$, $\gamma = 120^{\circ}16(3)$, Z - 2. Le facteur résiduel est égal à 0,049 et le facteur pondéré à 0,040. La maille est en relation avec celle de α -U₃O₈: $\mathbf{a} = 2\mathbf{a}_0$, $\mathbf{b} = -(\mathbf{a}_0 + \mathbf{b}_0)/2$, $\mathbf{c} = 2\mathbf{c}_0$. La structure apparentée à celle α -U₃O₈, consiste en chaines de bipyramides pentagonales [Ca,U]O₇ et d'octaèdres MoO₆, parallèlement à c. Les distances U-O dans les chaines U-O-Ca-O sont égales à 1,77(1) Å. L'ion UO₂²⁺ est caractérisé par son spectre IR. © 1987 Academic Press, Inc.

Introduction

Récemment nous avons identifié une famille de composés $M_x^{I}U_{1,4}W_{1,6}O_{18+x/2}$ de structure type bronze hexagonal (1). Cette série n'existe pas avec le molybdène. Par

0022-4596/87 \$3.00 Copyright © 1987 by Academic Press, Inc. All rights of reproduction in any form reserved. contre, avec ce dernier et des éléments divalents, on obtient une nouvelle série d'oxydes $M^{II}UMo_4O_{16}$ (M = Mg,Mn,Cd, Ca,Hg,Sr,Pb), qui ne se forme pas avec le tungstène.

Resultats

Les réactions s'effectuent à partir des ox-

^{*} Envoyez correspondence s'il vous plaît à M. R. Lee.

М	Rayon ionique en coord. VIII (4) (Å)	Paramètres cristallins (Å)	Température de fusion (°C)
 Mg	0,89	a = 13,119(3), b = 6,505(1), c = 7,920(2) $\alpha = 90^{\circ}00(3), \beta = 89^{\circ}83(3), \gamma = 119^{\circ}72(2)$	795
Mn	0,96	a = 13,169(5), b = 6,557(3), c = 8,010(3) $\alpha = 90^{\circ}00(4), \beta = 89^{\circ}85(4), \gamma = 119^{\circ}91(3)$	830
Cd	1,10	a = 13,213(5), b = 6,625(3), c = 8,150(3) $\alpha = 90^{\circ}00(4), \beta = 90^{\circ}32(4), \gamma = 120^{\circ}09(3)$	875
Ca	1,12	a = 13,239(5), b = 6,651(2), c = 8,236(3) $\alpha = 90^{\circ}00(4), \beta = 90^{\circ}38(4), \gamma = 120^{\circ}16(3)$	900
Hg	1,14	a = 13,221(6), b = 6,645(3), c = 8,248(4) $\alpha = 90^{\circ}00(5), \beta = 90^{\circ}43(5), \gamma = 120^{\circ}16(3)$	
Sr	1,26	a = 13,32(1), b = 6,762(5), c = 8,474(7) $\alpha = 90^{\circ}00(6), \beta = 90^{\circ}73(7), \gamma = 120^{\circ}51(6)$	770
Pb	1,29	a = 13,326(5), b = 6,811(2), c = 8,554(3) $\alpha = 90^{\circ}00(3), \beta = 90^{\circ}73(3), \gamma = 120^{\circ}74(3)$	760

TABLEAU I Phases *M*¹¹ UM0₄O₁₆

ydes UO₃, MoO₃ et MO, excepté pour le calcium et le strontium introduits sous forme de molybdates. Les mélanges sont chauffés en tubes scellés, à 600° C, pendant 20 heures.

L'analyse des produits, par diffraction X sur poudre, montre qu'on obtient une phase homogéne correspondant à $MUMo_4O_{16}$.

Les composés apparaîssent tous isotypes. Ils sont à fusion congruente, sauf $HgUMo_4O_{16}$ qui se décompose dès 640°C (Tableau I).

Des monocristaux de CaUMo₄O₁₆ sont obtenus par fusion à l'air suivie d'un refroidissement lent. L'examen des clichés de précession permet de leur attribuer la symétrie triclinique. L'affinement par moindres carrés des paramètres de la maille, à partir du spectre de poudre (Tableau II), conduit au facteur de qualité $F_{20} =$ 35 (0,016; 36) avec les valeurs suivantes (2):

a = 13,329(5) Å	b = 6,651(2) Å	$c = 8,236(3) \text{ \AA}$
$\alpha = 90^{\circ}00(4)$	$\beta = 90^{\circ}43(5)$	$\gamma = 120^{\circ}16(3).$

Les paramétres des phases isotypes, établis par analogie, sont fortement corrélés au rayon ionique du métal divalent (Tableau I).

Le spectre de poudre est très voisin de celui de α -U₃O₈ (3). La maille triclinique est en relation géométrique avec la maille orthorhombique de α -U₃O₈: $\mathbf{a} = 2\mathbf{a}_0$; $\mathbf{b} = -(\mathbf{a}_0 + \mathbf{b}_0)/2$; $\mathbf{c} = 2\mathbf{c}_0$ (Fig. 1).

Determination de la structure

Le cristal de CaUMo₄O₁₆ retenu pour cette étude est une aiguille jaune dont les

FIG. 1. Répartition des cations dans les structures de α -U₃O₈ et de CaUMO₄O₁₆, perpendiculairement à z.

TABLEAU II Spectre De Poudre De CaUMo₄O₁₆

		h	k	1			$d_{\rm obs}$ (Å)	d_{calc} (Å)	$I_{\rm obs}$
		1	0	ī			6,70	6,71	26
		1	0	1		1	6,66	∫6,66	25
_		1	ī	0		ſ]6,65	
$\overline{2}$	1	0	1	0	1	0	5,75	5,75	1
_		2	0	0	_		5,73	5,724	5
1	1	1	1	1	1	1	5,175	5,174	12
1	1	0	1	3	1	0	4,340	4,338	8
		0	0	2			4,130	4,118	80
1	1	ī	1	3	1	1	3,850	3,847	10
1	1	1	1	3	ī	1	3,831	3,829	10
		3	0	ī			3,480	3,472	2
		3	0	1			3,455	3,453	2
0	1	$\overline{2}$	1	$\overline{2}$	1	2	3,354	3,354	5
		2	0	2			3,330	3,331	20
		2	$\overline{2}$	0				3,325	
2	1	0	1	4	ī	0	3,316	3,310	100
ī	2	0	1	3	2	0	3,195	3,193	30
1	1	$\overline{2}$	1	3	1	2	2,996	2,995	6
0	2	0	1	4	2	0	2,878	2,875	3
2	1	2	1	4	1	2]	2,590	{2,588	32
$\overline{2}$	2	2	1	2	$\overline{2}$	2∫		2,587	
2	1	2	1	4	ī	2	2,572	2,571	20
ī	2	2	1	3	$\overline{2}$	2	2,522	2,521	14
0	2	2	1	4	2	2	2,352	2,352	3
$\overline{2}$	3	0	1	4	3	0	2,175	2,176	3
4	1	0	1	6	1	0	2,163	2,165	4
1	3	0	1	5	3	0	2,065	2,067	12
		0	0	4			2,060	2,059	14
0	1	4	1	$\overline{2}$	1	4	1,940	1,941	4
		2	0	4			1,932	1,933	5
		6	0	0			1,906	1,908	18

dimensions respectives dans les directions *a*, *b*, et *c* sont environ 20, 30, et 105 μ m. Trois arêtes parallèles à [001] présentent des troncatures. La masse volumique (d_{exp} = 4,83 g/cm³, d_{calc} = 4,85 g/cm³) implique la présence de 2 groupements formulaires par maille, et suggère le groupe spatial *P*1. 1998 réflexions indépendantes ont été collectées, à la température ambiante, par un diffractomètre à quatre cercles Philips PW 1100 jusqu'à une valeur maximale de sin θ/λ égale à 0,594 (λ MoK α = 0,71069 Å). Trois réflexions de contrôle ont été vérifiées toutes les 30 mesures. Les intensités ont été corrigées des facteurs de Lorentz et de polarisation, ainsi que des effets dus à l'absorption (μ = 204,56 cm⁻¹), à l'aide du programme de J.A. Ibers, d'après la méthode analytique décrite par Meulenaer et Tompa (5) (facteur de transmission entre 0,318 et 0,747).

Les facteurs de structure normalisés Eont été calculés en utilisant le facteur d'agitation thermique obtenu par la méthode de Wilson (6), soit B = 0,225 Å². Leur répartition statistique est bien centrosymétrique. Les 400 facteurs E de valeur supérieure à 1,29 sont introduits dans MULTAN 80(7) pour déterminer leurs phases. Une synthèse de Fourier est réalisée à partir des phases de la solution ayant la figure de mérite la plus élevée. Elle fait apparaître dans l'unité asymétrique 6 pics qui sont attribués à l'uranium, au calcium et aux 4 atomes de molybdéne.

Une première série d'affinements effectués à l'aide du programme ORXFLS (8) et suivie de calculs de densité électronique, a permis de localiser les 16 positions indépendantes des atomes d'oxygéne. Les facteurs de diffusion atomique, tenant compte de la dispersion anomale, sont ceux des "International Tables for X-Ray Crystallography" (9).

Les facteurs de structure observés ont été corrigés de l'extinction secondaire, sensiblement isotrope pour le cristal choisi et du type I défini par Becker et Coppens (10) (cristal mosaïque). L'affinement des coordonnées de position et des facteurs d'agitation thermique anisotrope de tous les atomes conduit à un facteur résiduel de 0,049 pour 1887 réflexions non nulles, et au facteur $R_w = 0.04$ en prenant en compte une pondération $w = 1/\sigma$ (F). La valeur $\Delta p/\Delta p$ $\sigma(p)$ converge vers 0,0001 après le dernier cycle d'affinement. La densité électronique, sur la dernière synthèse de Fourierdifférence, fluctue entre -1 et $1,4^{e}/\text{Å}^{3}$. Les coordonnées atomiques ainsi que les facteurs d'agitation thermique équivalents

TABLEAU III Coordonnees Relatives Et Facteurs D'agitation Thermique Equivalents

	X	Y	Z	Beg. (Å ²)
U	0,24999(6)	0,9541(1)	0,74997(9)	0,41(2)
Ca	0,2501(3)	0,9540(6)	0,2503(4)	0,20(5)
Mo ₁	0,5963(1)	0,4263(7)	0,7957(2)	0,49(3)
Mo ₂	0,9040(1)	0,7337(7)	0,7044(2)	0,52(3)
Mo ₃	0,0927(1)	0,2614(2)	0,7559(2)	0,45(3)
Mo ₄	0,4072(1)	0,5759(3)	0,7043(2)	0,45(3)
O ₁	0,9330(9)	0,084(2)	0,245(1)	0,7(2)
O ₂	0,9368(9)	0,084(2)	0,749(1)	0,5(2)
03	0,4335(8)	0,283(2)	0,746(1)	0,6(2)
O4	0,096(1)	0,247(2)	0,505(1)	1,2(2)
O5	0,1290(9)	0,547(2)	0,757(1)	1,1(2)
O ₆	0,748(1)	0,044(2)	0,035(1)	1,6(2)
O ₇	0,756(1)	0,054(2)	0,465(1)	1,4(2)
O ₈	0,627(1)	0,209(2)	0,258(1)	1,4(2)
O9	0,097(1)	0,253(2)	0,004(1)	1,0(2)
O ₁₀	0,2512(9)	0,323(2)	0,250(1)	0,5(2)
011	0,5977(9)	0,442(2)	0,506(1)	1,1(2)
O ₁₂	0,1246(9)	0,543(2)	0,261(1)	0,9(2)
O ₁₃	0,5961(9)	0,445(2)	0,003(1)	1,1(2)
O ₁₄	0,249(1)	0,312(2)	0,751(1)	0,8(2)
O15	0,625(1)	0,205(2)	0,765(1)	1,3(2)
O ₁₆	0,4377(8)	0,290(2)	0,249(1)	0,7(2)

sont rassemblés dans le Tableau III. Les distances interatomiques ont été calculées à l'aide du programme ORFFE 3 (11) (Tableau IV).

Decription de la structure

Elle est constituée d'enchaînements, suivant z, de bipyramides pentagonales liées par leurs sommets et au centre desquelles se situent alternativement les atomes d'uranium et de calcium. Les octaèdres MoO₆, eux-mêmes diposés en chaînes parallèles à z, relient les bipyramides entre elles (Fig. 2). Perpendiculairement à z, on trouve des couches de composition CaUMo₄O₁₀ alternant avec des couches de composition O₆.

Les octaèdres ont 4 liaisons Mo-O assez courtes (1,71 à 1,98 Å) formant un tétraèdre, et 2 autres plus longues (2, 17 à 2,41 Å). Les 7 oxygènes liés au calcium sont si-

FIG. 2. Projection de la structure de CaUMo₄O₁₆ suivant z ($0 < z \le 0.535$).

tués à des distances très homogènes du cation central (2,34 à 2,45 Å). Par contre, l'atome d'uranium, sensiblement équidistant des 5 oxygènes de la base, est fortement coordonné aux 2 oxygènes des sommets des bipyramides (1,77 Å).

TABLEAU IV

DISTANCES INTERATOMIQUES (Å) METAL-OXYGENE DANS LES POLYÈDRES DE COORDINATION

U-O ₍₆₎	1,77(1)	MO ₍₃₎ -O ₍₉₎	1,73(1)
U-O(7)	1,77(1)	MO ₍₃₎ -O ₍₅₎	1,74(1)
U-O(1)	2,31(1)	MO ₍₃₎ -O ₍₂₎	1,83(1)
U-O ₍₃₎	2,31(1)	MO ₍₃₎ -O ₍₁₄₎	1,96(1)
U-O(5)	2,35(1)	MO ₍₃₎ -O ₍₁₎	2,17(1)
U-O ₍₈₎	2,36(1)	MO(1)-O(4)	2,40(1)
UO ₍₁₄₎	2,39(1)		
MO(1)-O(13)	1,71(1)	MO ₍₄₎ -O ₍₁₎	1.73(1)
MO(1)-O(15)	1,71(1)	MO(4)-O(8)	1,74(1)
MO(1)-O(10)	1,90(1)	MO(4)-O(16)	1,82(1)
MO(1)-O(3)	1,91(1)	MO(4)O(14)	1,98(1)
MO(1)-O(16)	2,18(1)	MO(4)-O(3)	2,17(1)
MO ₍₁₎ -O ₍₁₁₎	2,39(1)	MO ₍₄₎ -O ₍₁₃₎	2,41(1)
MO(2)-O(12)	1,71(1)	Ca-O ₍₇₎	2,34(1)
MO ₍₂₎ -O ₍₄₎	1,73(1)	Ca-O ₍₆₎	2,35(1)
MO ₍₂₎ -O ₍₁₎	1,91(1)	$Ca-O_{(2)}$	2,36(1)
MO ₍₂₎ -O ₍₁₀₎	1,93(1)	$Ca-O_{(16)}$	2,36(1)
MO ₍₂₎ -O ₍₂₎	2,18(1)	$Ca-O_{(15)}$	2,37(1)
MO(2)-O(9)	2,40(1)	$Ca-O_{(12)}$	2,38(1)
	.,	Ca-O(10)	2,45(1)

Discussion

La structure de CaUMo₄O₁₆ dérive de celle de α -U₃O₈, formée d'enchaînements de bipyramides pentagonales jointes à leurs bases par des arêtes ou des sommets. En les comparant dans leurs plans (x, y) respectifs denses en atomes métalliques, on constate que les chaînes U-O-Ca-O coincident avec 1/3 des chaînes U-O de α -U₃O₈. Les molybdènes occupent des positions proches de celles des autres uraniums de α -U₃O₈, mais avec un environment octaèdrique (Fig. 1).

Dans α -U₃O₈, les distances U–O sont toutes supérieures à 2 Å, alors que dans CaUMo₄O₁₆, les uraniums forment avec 2 oxygènes proches l'entité ion uranyle. Ceci est corroboré par l'existence des bandes de vibration IR caractéristiques de UO₂²⁺, pour tous les composés isotypes, et par la luminescence émise sous rayonnement UV, excepté pour les composés au manganèse et au plomb.

Le trioxyde α -UO₃ a une structure analogue à celle de α -U₃O₈, avec un déficit de 12% d'uraniums (12). Au voisinage des lacunes dans α -UO₃, ainsi que dans les composés M^{II} UMo₄O₁₆, la formation d'ions $UO_2^{2^+}$ résulte du fort pouvoir polarisant de U^{+6} .

References

- 1. M. R. LEE ET P. MAHE, Ann. Chim. Fr. 6, 563 (1981).
- 2. G. S. SMITH ET R. L. SNYDER, J. Appl. Crystallogr. 12, 60 (1979).
- 3. B. O. LOOPSTRA, Acta Crystallogr. 17, 651 (1964).
- 4. R. D. SHANNON, Acta Crystallogr. A 32, 751 (1976).
- 5. J. DE MEULENAER ET H. TOMPA Acta Crystallogr. 19, 1014 (1965).
- A. J. C. WILSON, Nature (London) 150, 151 (1942).
- P. MAIN, S. J. FISKE, S. E. HULL, L. LESSINGER, G. GERMAIN, J. P. DECLERQ, ET M. M. WOOLF-SON, "Multan 80—A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data," University of York (England) and Université of Louvain (Belgium) 1980.
- 8. W. R. BUSING, Acta Crystallogr. A 27, 683 (1971).
- "International Tables for X-Ray Crystallography," Vol. IV, Kynoch Press, Birmingham (1974).
- P. BECKER ET P. COPPENS, Acta Crystallogr. A 31, 417 (1975).
- W. R. BUSING, K. O. MARTIN, H. A. LEVY, G. M. BROWN, C. K. JOHNSON, ET W. E. THIESSEN, Oak Ridge National Laboratory, Tennessee (1971).
- C. GREAVES ET B. E. F. FENDER, Acta Crystallogr. B 28, 3609 (1972).